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SUMMARY 

We give a self-contained presentation of our macroelement technique for verifying the stability of finite 
element discretizations of the Navier-Stokes equations in the velocity-pressure formulation. 
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1. INTRODUCTION 

In this paper we will consider some aspects of the approximate solution of the incompressible 
Navier-Stokes equations by finite element methods. The class of methods to be discussed consists 
of methods where independent finite element spaces are used for the velocity and the pressure. 

There are two difficult problems connected with this approach. The first is the approximation 
of the convection term. Recently, considerable progress has been made with this problem, as can 
be seen from some of the other papers in this issue. 

The problem we are going to discuss stems from the incompressibility condition. It is well 
known that this implies that the finite element spaces for the velocity and the pressure cannot be 
chosen arbitrarily. Instead, the velocity-pressure pair has to satisfy a stability inequality, the 
famous ‘BabuSka-Brezzi’ or ‘inf-sup’ condition. 

The basic theory for mixed methods was developed in the fundamental papers by BabuSka1y2 
and B r e ~ z i . ~  Later, this theory was applied to mixed finite element methods for a number of 
problems in continuum mechanics. 

With regards to the discretization of the Navier-Stokes equations, a technique for proving the 
BabuSka-Brezzi condition was introduced in a basic paper by Crouzeix and R a ~ i a r t . ~  In the same 
paper a widely used technique for designing stable discretizations using ‘bubble functions’ was 
introduced. 

The drawback of the technique of Reference 4 is that it consists of an explicit construction of 
the stability inequality, and this involves some technical scaling arguments. In particular, the 
technique is difficult to apply to so-called Taylor-Hood methods in which continuous approx- 
imations are used for the pressure. 

The problem of analysing Taylor-Hood methods was partially resolved by Bercovier and 
Pironneau,’ who showed that the convergence can be proved by altering the norms used in the 
stability inequality. Later, Verfurth6 considerably simplified their analysis by showing that the 
modified stability inequality implies the inequality with the natural norms. 

We refer to the book by Girault and Raviart’ for a rather complete survey of methods which 
have been proven to be stable. 
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936 R.  STENBERG 

The purpose of this paper is to give a self-contained review of a technique developed by us8q9 
for the analysis of mixed methods (see also Reference 10 for very related ideas). Our results show 
that the BabuSka-Brezzi inequality can be proved by verifying similar local inequalities posed 
over 'macroelements' consisting of a finite number of elements. Furthermore, these local stability 
estimates are equivalent to a simple algebraic condition which often can easily be checked. As a 
result, many technical arguments previously needed when analysing a method can be avoided. In 
engineering language our technique consists of a 'patch test' that has to be verified. Another 
related but non-rigorous (see Remark 2 below) 'patch test' has recently been advocated." 

The plan of the paper is the following. In the next section we briefly recall some background 
results and definitions. Section 3 is devoted to our analysis technique, which is applied to some 
examples in Section 4. 

We only treat conforming methods, but the technique can also be applied to non-conforming 
approximations. This has recently been done in Reference 12. 

We would like to emphasize that the results of the paper also cover the analysis of mixed 
methods for (nearly) incompressible elasticity. 

Let us also point out that the same technique can be applied for the afialysis of mixed finite 
element methods for other problems, e.g. the equations of elasticity with the displacement and the 
stress tensor as independent variables. 

2. PRELIMINARIES 

Since we are not concerned with the discretization of the convection term in the Navier-Stokes 
equations, it will be sufficient to consider the approximation of the Stokes equations with 
viscosity equal to unity: find the velocity u = ( u l , .  . . , ud)  and the pressure p such that 

- A u + V p = f  in Q, 

V . u = O  in Q, (1) 

u=O on an, 
where, as usual, non-homogeneous boundary conditions are included in the body force vector f. 
The domain Q c R d ,  d = 2  or 3, is assumed to be bounded and, for simplicity, polygonal or 
polyhedral. 

The mathematical formulation of the problem is: find UE[H;(Q)]~  and peL;(Q) such that 

Our notation is ~ t a n d a r d . ' ~  [ H s ( D ) ] " ,  with c1= 1 or d and integer s, denotes the standard L2(D)-  
based Sobolev spaces. L ; ( D )  denotes the subspace of L 2 ( D )  of functions with zero mean value: 

The norms and seminorms in [ H " ( D ) ] "  are denoted by I( - respectively. Further- 
more, (. , . )D denotes the inner product in Lz(D) ,  [Lz(D)ld or [L2(D)Idxd. As usual, the 
subscripts are dropped for the case D = Q. By C and C j ,  jEN, we denote various positive 
constants which do not necessarily take the same values at each instance. Furthermore, these 
constants are independent of the element and macroelement partitioning %?h and J l t h  to be 
introduced. 

and 
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The problem (2) is a typical example of a saddle-point problem, and the existence and 
uniqueness of the solution are a consequence of the inequality 

A simple proof of this in the case when R has a smooth boundary can be found in Reference 14, 
pp. 172-174. For the general case we refer to Reference 7. 

The class of methods we are concerned with is formulated as follows. We choose two subspaces 
V ,  c [HA(R)]~ and Ph c Li(R) and pose the problem: find U h E V h  and P h E P h  such that 

( v u h ,  v v ) - ( v ' v ,  P h )  = (f, v), vevh, 

( v * u h ,  q)=o, q E P h .  (4) 

Now, in order to have a good finite element method, the finite element spaces have to be chosen 
so that they inherit the property (3), i.e. they should satisfy 

Then the theory of mixed methods states that the following optimal error estimate is valid: 

II' -uhIIl+ I lP -Ph110  6 (6) 

3. THE ANALYSIS TECHNIQUE 

In order to be able to give precise and general results, we have to define our concepts properly. 
This will unfortunately burden the presentation, but the main idea should, however, not be 
difficult to grasp. 

The reader mainly interested in applications of finite element methods may skip the technical 
details in the proofs of the stability and error estimates, and instead go to Theorem 2 after getting 
acquainted with our definitions. 

We let %h be a partitioning of fi into elements which are all assumed to be either triangles or 
convex quadrilaterals in the two-dimensional case, and tetrahedrons or convex hexahedrons for a 
three-dimensional problem. Naturally, the partitioning is assumed to satisfy the usual compatibil- 
ity and regularity ~0ndi t ions . l~  As an example we recall the definition of regularity for a 
triangular partitioning. Given an element Kc%, ,  let h, denote the diameter of K and let p K  be the 
maximum diameter of all circles contained in K .  %?h is then regular if there is a constant a> 1 such 
that 

For the other type of elements the regularity is defined analogou~ly. '~ 
Let us further assume that the finite element spaces can be uniquely defined using a reference 

element I? (i.e. the unit triangle, tetrahedron, square or cube) and two finite-dimensional 
polynomial spaces 9 and P^ defined on I?. For K E%?h we let FK be the affine, bilinear or trilinear 
mapping from K onto K .  We then define 

h,  < ap, for all KE%?h.  (7) 

v h  = { V E I H A ( f i ) ] d l V ( X ) = t ( F i l ( X ) ) ,  t E 9 ,  K E w h }  (8) 

ph = ( p E L i ( Q ) l p ( x )  = fi(Fil(X)), fiEF, K E g h }  (94  
and 
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or 

Ph={PEC(~)nLg(R)Ip(x) = fi(FK1(X)), fieP^, (9b) 
The choice (9b) gives a method of the Taylor-Hood type. 

Next let us introduce the concept of a macroelement, i.e. a connected set which is the union of at 
least two elements. For the elements of a macroelement we also impose the usual compatibility 
and regularity conditions. 

Given a macroelement M ,  we define finite element spaces consistent with (8) and (9): 

Vo,M = {v~[H;(M)]~lv(x)  = V(F,’(x)), 9 ~ 9 ,  XEK, K c M }  (10) 

PM = { p ~ L ’ ( M ) l p ( x ) = b ( F K ’ ( x ) ) ,  f i ~ F ,  XEK, K c M }  (1 la) 

PM = { p ~ C ( M ) ) p ( x )  = fi(FK1(x)), f l ~ P ^ ,  XEK, K c M }  (1lb) 

and 

or 

By r h  we denote the collection of edges or faces (for a three-dimensional problem), of the elements 
of Wh, not lying on the boundary of a. 

The following norm defined in P h  turns out to be very useful: 

IIpIIh2= 1 h i I I V p l I g , K +  T E r h  1 hTjTl[pJl’ds. 
K E Y h  

Here and in the sequel T stands for an edge or a face of an element and h ,  denotes the diameter of 
T. ( [ p ] ) ,  denotes the jump in p along T. 

In PM we similarly define 
r 

where r, denotes the interior edges (faces) of M ,  i.e. rM = { T c MI Tgt d M } .  
The usefulness of the macroelement concept and the above mesh-dependent norms is that it 

enables us to build a global stability estimate by simply adding together analogous local 
estimates. 

Lemma 1 

Suppose that we can define a macroelement partitioning such that: 

(i) Each T E  rh is an interior edge (face) of at least one and not more than L macroelements of 

(ii) There is a positive constant C such that 

holds for all M E 

Then the stability inequality 

. 

is valid. 
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Proof: Let p E P, be arbitrary. The local stability estimates imply that for every M E  there 
exists v ~ M E V , ,  vanishing outside of M, such that 

(V * VMM, P) = (V VMM, P)M 2 ClPI L 
and 

Let us define 

v =  1 VM. 
M € M h  

Since each TE rh is an interior edge (face) of at least one M E  Ah, each element K E gh is contained 
in one macroelement of A h .  Hence we have 

( V . V , P )  = 1 (V-v , ,  P )  2 c c IP lL  2 ClIP'lih2. 
M € M h  M € M h  

Furthermore, since each TE r, is contained in at most L macroelements, each element K E @h is 
contained in at most 6L macroelements (with the maximum obtained for a hexahedral partition- 
ing). This gives 

which together with the earlier estimate prove the assertion. 0 

The following two results, essentially due to Verfurth,6 provide the link between the stability in 
the mesh-dependent norm and in the desired Lz-norm. We formulate them as separate lemmas, 
since the same reasoning can be used in other contexts as We remark that the lemma 
below is valid for arbitrary spaces V, and ph. 

Lemma 2 

There are two positive constants C , ,  C ,  such that 

Proof: Let p E Ph be arbitrary. The condition (3) then implies the existence of w E [ H ; ( Q ) l d  such 
that 

( V . W P )  2 ~ , l lP l l :  (14) 

We now interpolate w with f i ~ V , ,  defined by the technique of ClemCnt," so that we have the 
estimates (see Reference 18, Lemma 3 and Reference 7, pp. 109-1 11) 

and 
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Integrating by parts on each K EW,, and using (14) and (16), we get 

( V - G ,  p )  = ( V  - ( i i  - w), p )  + ( V - w ,  p )  

3 ( V . ( +  -WL P) + c, IIP 11: 

Lemma 3 

Suppose that the stability estimate (13) is valid. Then the desired stability condition (5) also holds. 
Proof: Let C ,  , C2 be the constants in Lemma 2 and denote by C ,  that of (13). For 0 < 5 < 1 we 

then have 

when choosing 5 < C , ( C 2  + C3)- '  0 

By Lemmas 1-3, the problem of proving the stability inequality is reduced to proving the local 

An immediate observation is that a necessary condition for the inequality (12) to be valid is that 
estimates (12). 

the subspace 

only consists of the functions which are constant on M .  We call this the 'macroelement condition'. 
In Reference 8 we showed, roughly speaking, that if this condition is satisfied independently of 

the geometrical shape of the macroelement, then the local stability estimate, with a constant 
independent of the particular macroelement, is valid. For stating the exact result we need one 
more definition. 

A macroelement M is said to be equivalent with a reference macroelement M if one can define a 
continuous one-to-one mapping F M :  M - t  M such that: 

N M  = {PEP&fI(V.V,P)M = O, v E v O , M }  

(i) F ~ ( I ~ ? )  = M .  
(ii) If M =  u?=~ kj ,  where .kj, j =  1,2, . . . , m, are the elements of M, then K j = F M ( k j ) ,  

j =  1,2, . . . , m, are the elements of M .  
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(iii) F,,r<, = CKJ 0 FZ,' , j = 1,2, . . . , m, where FKJ and Fk,  are the mappings from the reference 
element K onto K j  and k j  respectively. 

Lemma 4 

Let & be a class of equivalent macroelements. Suppose that for every M €8 the space N ,  is one- 
dimensional, consisting of functions constant on M .  Then there is a constant C such that 

holds for all M E  &. 
Proof: For M E  & define 

B, = inf sup ( V ~ V ,  p),. 
PEPM v t V O ,  M 

I P l w = l  l l v l l , , M = l  

Since N ,  is assumed to consist only of the constant functions, we have fl, > 0. We thus have to 
show that there exists a constant /3, > 0 such that B, 2 BE > 0 for every M E  8. 

To prove this we use a kind of generalized scaling argument. Denote by i',i2,. . . , ik the 
vertices of 6. Then M is uniquely defined by its vertices x i  = F,(ii), i = 1,2, . . . , k. In particular, 
this means that we can write fl,=fl(x', x 2 ,  . . . , x k ) = f l ( X ) ,  with X = ( x ' ,  x2, . . . , x k )  con- 
sidered as a point in Rdk. Without loss of generality we can assume that x 1  coincides with the 
origin, and h ,  = 1,  with h ,  = maxKcMhK, since the general case can be handled by changing 
variables from x to h i '  ( x  - x'). By this, every vertex will be within a given distance from the 
origin. Furthermore, every K c M has a diameter less than or equal to unity and satisfies some 
regularity conditions of the type (7). This means that X belongs to a compact set in Rdk. If now the 
function f l  can be proven to be continuous, we have 

inf sup (V*v,p) ,  =p,2pe>0,  M E & ,  
PEpM vevO,  M 

l P l M = l  I l V 1 / I . M = I  

which is equivalent to the asserted estimate. 
It is not difficult to see that B is continuous. Let $ be another macroelement in & and denote by 

x" the corresponding point in Rdk. Define G: M - 3  through G = F f i  0 F M1, where Ffi and F, are 
the mappings from the reference macroelement onto n;i and M respectively. For arbitrary 
v E Vo,, and p E P, we define ? E Vo,d and p' E Pfi through 

i ( 2 )  = v(G-'(Z)) ,  p ( Z ) = p ( G - l ( Z ) )  Z E G .  

Let JG be the Jacobian of G. By transforming integrals posed over d to integrals over M ,  and 
using the fact that J ,  converges towards the identity when Z-X, we now get estimates of the type 

I(V 'V,  PI, - ( V  ' i ,  PIG I d c, ( X ,  2) IVI1,MIPI,, 

I lVI1 ,M - l~I1 ,Gl  d CZ(X9 x") lVl ' ,M? 

I I P l M - l ~ I ~ l  d CdX,  nlPlh4,  

with C , ( X ,  x")-+O, i =  1, 2, 3, when k + X .  
The continuity of B is now a simple consequence of these three estimates. 0 
By combining Lemmas 1 , 3  and 4 we arrive at our technique for the analysis of mixed methods. 
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Theorem I 

Suppose that there is a fixed set of equivalence classes b,, i = 1,2, . . . . , I ,  of the macroelements, a 
positive integer L and a macroelement partitioning A,, such that: 

( M  1 ) For each M E bi, i = 1,2, . . . , I ,  the space N ,  is one-dimensional, consisting of functions 

(M2)  Each ME&',, belongs to one of the classes bi, i = 1, 2, . . . , 1. 
(M3)  Each T E  rh is an interior edge (face) of at least one and not more than L macroelements 

that are constant on M .  

of A h .  

Then the stability inequality (5) is valid. 
Proof: Lemma 4 shows that (12), with a constant Ci, holds for each class b,, i = 1, 2, . . . , 1. 

Letting C=min(  C,, C,, . . . , C,}, the assumptions of Lemma 1 are valid and the assertion then 
follows from Lemma 3. 0 

Remark I 

Here and in Reference 9 we have chosen to define a macroelement to consist of at  least two 
elements and defined the partitioning A,, to consist of overlapping macroelements. 

In Reference 8 (and also in References 7 and 10) the partitioning is defined such that every 
element belongs to one and only one macroelement. Furthermore, the local stability estimates, 
used to build the global one, were 

This estimate also follows from the condition that N ,  consists of the constant functions. 

on &'h in order to assure the stability of the velocity-pressure pair (Vh, F,,), with 
Since the macroelements were non-overlapping, some additional assumptions had to be made 

ph = { P E P , , I P ~ ,  is constant for a11 MEA, , } .  

There are two reasons for introducing the present modification of our technique. 
First, by using non-overlapping macroelements, often far more classes are needed, and 

sometimes it can even be difficult to see how a macroelement partitioning, satisfying all the 
conditions required, should be constructed. This is particularly true for some three-dimensional 
methods. A good example is provided by the quadratic tetrahedral Taylor-Hood method. The 
macroelement condition is easily proven to be satisfied for a macro consisting of tetrahedrons 
which have exactly one common vertex in the interior of the ma~roelement. '~ An arbitrary finite 
element partitioning %?,, cannot, however, be regrouped into non-overlapping macroelements of 
this type. Also, for those cases for which this would be possible, the condition that the pair 
( v h ,  p,,) be stable is not necessarily valid. 

Secondly, by using overlapping macroelements and the local estimates in the form (12), the 
analysis shows more clearly that it is the condition that N ,  consist of the constant functions 
which is the condition that has to be verified for the macroelements chosen. 0 

Remark 2 

The patch test introduced in Reference 11 consists simply of checking that 

dim Vo,, 2 dim P, - 1. 

Hence that test is merely the first thing that has to be checked when choosing a candidate for a 
class satisfying the macroelement condition. 



FINITE ELEMENT METHODS FOR VISCOUS INCOMPRESSIBLE FLOW 943 

Therefore the patch test of Reference 11 is far from a sufficient condition for the stability of the 
method, and in fact does not even guarantee that the solution is unique. A good example is the 
Q9/Q4 element (with the notation of Reference ll), which satisfies the test for a patch of 2 x 2 
elements. However, it is a simple exercise to show that there are meshes for which this method 

0 

For the practising engineer it is desirable to have a clear understanding of the problem with 

does not yield a unique solution. 

mixed methods. Let us therefore present the following simplified version of our results. 

Theorem 2 

Suppose that there is a set of equivalence classes di, i = I ,  2, . . . , I ,  of macroelements and a 
macroelement partitioning A,, such that: 

( M l )  For each M E  &,, i = 1,2,. . . , I ,  the space N ,  is one-dimensional, consisting of functions 
that are constant on M .  

(M2) Each M E A , ,  belongs to one of the classes di, i = '1, 2, . . . , 1. 
(M3) Each T E  I',, is an interior edge (face) of at least one macroelement of A,,. 

Then the problem (4) has a unique solution. 
Proof: By the linearity we have to show that if 

( v ~ ~ ~ v v ) - ( v ~ v ~ ~ ~ ) = o ~  VEVh, 

(v'uh, 4 )  = O, qEPh? 
then u,, = 0 and P h  = 0. 

To this end we choose v = u,, and 4 = P,, above. This gives 

0 = (VU,,, VUh) = IVUhl'dX, b 
i.e. u,, is a constant vector in R, and since it vanishes on the boundary of R we have u,, = 0. 

The first equation above then reduces to 

(v'v,p,,) = 0, VEV,,. (20) 
Now, the conditions (Ml)-(M3) ensure that for each interior edge (face) T E ~ , ,  there is a 

macroelement M with T i n  its interior, and a V,EV~,, c v,, such that choosing v = v, in (20) 
implies that p h  is constant on M .  Since each element has at least one edge (face) in r,,, this shows 
that phis constant in the whole of R. Owing to the requirement of zero mean value we have p,, = 0. 

0 

We see that the proof above is extremely simple and hence could be presented in elementary 
engineering education. Compared to non-rigorous 'theories' such as the well known 'constraint 
counting' or the patch test of Reference 11, it has the advantage of giving a simple and completely 
rigorous condition by which the uniqueness of the approximate solution can be assured. 

For the practitioner it should be comforting to know that the condition also implies the strict 
mathematical stability condition. 

4. APPLICATIONS 

Let us illustrate our technique by applying it in some concrete examples. 

at least some pedagogical interest, since it is ideally suited for demonstrating the technique. 
We will first consider a non-standard method introduced by us in Reference 9. The method has 
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Example 1 

Let %,, be a triangulation of the two-dimensional domain. Define 

vh = { v  = ( U 1 , u 2 ) E [ H h ( n ) ] 2  I u l I K E P l ( K ) ,  u 2 1 K E P 2 ( K ) ,  K E V h } ,  

ph = I P I K E P O ( K ) ,  K E g h } .  

As macroelements we take the union of elements which all have exactly one common vertex in 
the interior of the macroelement (see Figure 1). Let us impose the slight restriction on the mesh 
that every element have at least one vertex in the interior of 0. A,, is then constructed by taking 
for each interior vertex of the mesh one macroelement with this vertex as its interior vertex. 

With this the conditions (M2) and (M3) of Theorem 1 are satisfied and it remains to check the 
condition ( M l ) .  

Let M be an arbitrary macroelement of this type and let K i ,  i = 1,2, .  . . , ti, be the elements of 
M .  The midpoints and the normals to the interior edges of M we denote by x i  and ni, i 
= 1, 2,. . . , K, respectively. xo is the vertex common to all elements of M .  For P E P ,  we let p i  
- - p l K , , i = 1 , 2  , . . . ,  ti. 

Figure 1 

The degrees of freedom for u E Vo,, are the values of both components of u at x o  and the values 
u , ( x i ) ,  i = 1,2, . . . , ti. Choosing UEV,,,  such that the only non-vanishing degree of freedom is 
u q ( x i ) ,  the condition (V - u, p)M = 0 implies that p i  = pi + (with pK + = p o )  if n, - e,  # 0, where e ,  
= (0,l). Hence the space N ,  can be at most two-dimensional, and this happens only if two of the 
edges are parallel to e,. However, in this case one chooses u such that the only non-zero degree of 
freedom is u l ( x o ) .  The condition for N ,  then forces p to be constant on the whole of M .  
The conditions of Theorem 1 are thus valid and hence we get the error estimate 

I I u - u h I I 1  + IIP-phIIO Ch(lulZ+Ipll). 

The corresponding method can naturally also be defined for a quadrilateral mesh or a mixture 

In the next examples we will consider the original Taylor-Hood methods. 

of triangles and quadrilaterals. 0 

Example 25*6  

We again let %?h be a triangulation of fi c R2 and define 

vh = {vE[H;(fi)]' I v l K E [ p Z ( K ) 1 2 ,  

ph = {PEc( f i )nLz(n)  I PlKEP1(K),  

K E g h } ,  

KEwh} .  



FINITE ELEMENT METHODS FOR VISCOUS INCOMPRESSIBLE FLOW 945 

For this method the macroelement condition is valid for a macroelement consisting of 
three elements. To prove this we consider an arbitrary macroelement M = u := , Ki as shown in 
Figure 2. 

Figure 2 

The degrees of freedom for u E Vo, are now the values of u at the midpoints XI' and xZ3  of the 
edges in the interior of M .  t,,, t23 and n,,, 1123 denote the tangents and the normals respectively to 
the interior edges. 

Let us choose u such that u ( x ' ~ ) * ~ , ,  = 1, u(x12)-n12 = 0 and u ( x , ~ )  = 0. Since Vp-t,, is 
constant in K,  u K,, a simple calculation gives 

(V-U,  P)M = - ( u , V P ) M  = -3Carea(K1)+area(K2)1(V~.f12),K,vK,. 
Hence, if p E N M ,  then 

Vpst,, = 0 in K,  v K,, 

and by the same argument 

Vp-t,, = 0 in K ,  u K,. 
In K, we thus have 

v p  = 0, 

i.e. PEN, is constant in K,. 

u(x2,). n,, respectively. The condition for N M  then implies 
Next we choose u such that the only non-vanishing degrees of freedom are U ( X ~ ~ ) * ~ ~ ,  and 

Vp-n,, = 0 in K, 
and 

Vp-n,, = 0 in K,. 

Together with (21) and (22) this shows that PEN, is also constant in K,  and K,. Since p is by 
definition continuous, it is a constant in the whole of M .  The macroelement condition is thus 
satisfied. 

The construction of the macroelement partitioning Ah is now simple; for each interior edge of 
Vh we take one macroelement with this edge in its interior. 
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The conditions of Theorem 1 are then valid and we get the error estimate 

IIu--u,II,+ llP-PPhIl* <Ch2(lul,+IP12). 

We would here like to remark that our analysis shows that the error estimates are valid for an 
arbitrary mesh gh.  Hence the restriction imposed in References 5 and 6 ,  namely that every K EW,, 
must have at least one vertex in the interior of Q, is unnecessary. 

Example 35,8 

%h is now defined to be a partitioning of fi into convex quadrilaterals and the finite element spaces 
are defined as 

vh = {vECHh(a)12  I v I K E C Q ~ ( K ) I ~ ,  KEwh), 

ph = { PEC(Q) n G ( Q )  I P I K E  Q I  ( K ) ,  K ",)* 

For this method the macroelement condition is valid for a macroelement consisting of two 

To prove this we consider a macroelement M = K ,  u K ,  and the corresponding reference 
elements. 

macroelement $ = k, u K, as in Figure 3. 

F 

/------ 
t f i  

2 2  

Figure 3 

Let F = ( F , ,  F , )  be the continuous piecewise bilinear mapping from $ onto M .  Defining b(Z) 
= u(F(2)) and @(a) = p(F(2)),  we can write 

for u E Vo, , and p E P,. Here J F  is the Jacobian matrix of F,  JF is the transpose of JF and I JF I 
denotes the determinant of J,. a(Z) and V@(R) are considered as column vectors. 

Since 
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This gives 

and hence the composite Simpson rule gives the exact values for the integrals 

[a(A)TJ,T(A)V@(A)lJF(A)l],rzi~Q3(Ki), i = 1, 2, 

ji, J;T(A)V@(A) lJF(A) (  dA, i = 1, 2. 

Let us now choose u E Vo* , such that the only non-vanishing degrees of freedom are the values 
of both components at the midpoints x7 and x9 of K ,  and K ,  respectively. Then, using the above 
observation for calculating the integrals, we conclude that the condition ( V  - u ,  p ) ,  = 0 implies 
that (with xi  = F(Ai)) 

JF' (Ai )V@(Ai )  I J F ( A i ) l  =0, i=7, 9. 

Since IJF(Ai)l # 0, i = 7, 9, this shows that 

V@(A') = 0, i = 7,9. 

Let now p i  = f i (x i )  = @(Ai), i = 1,2,. . . , 6, be the degrees of freedom for PEP,. Then the 
above four conditions for N ,  implies that 

p1 = p 3  = p s  = a and p 2  = p 4  = p6 = b, 

where a and b are arbitrary real constants. 

(= a(A')), we conclude as before that the condition ( V  * u, p ) ,  = 0 implies 
Next, when choosing u E Vo,M such that the only non-vanishing degrees of freedom are u(x') 

a T ( A 8 )  { [ JF T(A')Va(A') I JF(A') 1]1a, + [JF T(.?)V@(A') I JF(f')l]& 1 = 0, (23) 
with the restriction to K c ,  i = 1, 2, denoting the limiting value when ,?+A8, A E  f i .  If we now let 
u ( x 8 )  = a(&') = x 6 x 3 ,  with x 6 x 3  denoting the vector from x6 to x3, then we have 

[ J F 1 ( A ' ) Q ( A ' ) ] l ~ ,  = &2, i = 1, 2, 

with e2 = (0, 1). Since d 2 @  is continuous at ,?', (23) reduces to 

aZ@(A'))EIJF(a'))lla, + IJF(a8))t\kzl = O. 

This gives 

i.e. a = b. The macroelement condition is thus proved for a macroelement of two elements. 

mesh. 

o =  d 2 f l ( A 8 ) = p 3 - p 6 = U - b ,  

The partitioning A?,, is then obtained by taking one macroelement for each interior edge of the 

We have thus proved the optimal convergence rate of the method: 

I I u - u h I I 1  + I I P - P h l I O  d C h 2 ( l u 1 3 + l p 1 2 ) .  

Let us finally remark that the above arguments can be generalized for the whole family of 
quadrilateral Taylor-Hood methods: 

v h  = {vE[Hh(fi)12 I v l x E [ Q k ( K ) 1 2 ,  K E q h ) ,  

For some further applications of our technique we refer to References 7-9 and 19. 
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